@@ CodeBreakers Magazine

Security & Anti-Security - Attack & Defense

How to Write Your Own Packer
by BigBoote

Vol. 1, No. 2, 2006

Abstract:
Why write your own packer when there are so many existing ones to choose from? Well, aside from making your executables smaller,
packing is a good way to quickly and easily obfuscate your work.

© CodeBreakers Journal, http:/www.CodeBreakers-Journal.com

How to Write Your Own Packer
By BigBoote

Why write your own packer when there are so many
existing ones to choose from? Well, aside from making
your executables smaller, packing is a good way to
quickly and easily obfuscate your work. Existing well-
know packers either have an explicit ‘'unpack’ function,
or there are readily available procdump scripts for
generating an unpacked version.

1 Intro

Why write your own packer when there are so many
existing ones to choose from? Well, aside from making
your executables smaller, packing is a good way to
quickly and easily obfuscate your work. Existing well-
know packers either have an explicit 'unpack' function, or
there are readily available procdump scripts for
generating an unpacked version.

Since this document has quickly exploded in length I'm
going to break it up into separate installments. In this
installment I will cover the qualitative aspects of
producing a packer. I'll discuss what you're getting into
and how the packer is structured in general. I'll briefly
discuss some pitfalls, and I'll give some links to technical
information you will need to be familiar with before going
into the next installments.

In the next two installments I'll go into details of how to
implement the components of the packer and how I
usually go about producing them.

2 What You're Getting Into

It's not really hard, per se, but it is rather tedious code.
Lots of pointer manipulation and translation to keep
track of. Aside from that, if you can write code to add and
subtract integers and do file 10, you've got all the skill
needed! As mentioned, it is tedious code so you will
probably do well to not attempt this coding on a
hangover; trust me, I know.

FYI, the last packer I produced was fairly full-functioned
(exes and dlls, several compression algorithms with
debug capability and advanced support such as TLS
(critical for Delphi apps)) and it weighed in at about 3700
lines for the packer tool and about 1000 lines for the
decompression stub it embeds in the target. That's
somewhere around 70 printed pages of code. So, not a
huge app, but not a tiny one either. The first one I

CodeBreakers Magazine — Vol. 1, No. 2, 2006

produced took about 1.5 weeks to produce including
research and bug fixing. Subsequent ones took far less
since I had already done the hard part, which is figuring
out how. Hopefully this document will save you that time
as well!

You do not have to use assembler for the most part. If you
can part with supporting some esoteric features, you
won't have to use it at all. All of that is relevant for the
decompression stub only anyway. The packer can be in
Logo or Object-Oriented COBOL if you like.

OK, enough of the blahblahblah, on to technical stuff....

3 Big Picture

Simple. Executable is analyzed, transformed, and an
extra piece of code is attached which gets invoked instead
of the original program. This piece is called a 'stub' and
decompresses the image to its original location. Then it
jumps to that original location. But you know this
already.

Sounds simple, but there are pitfalls that await you.
Some of these include:

* Support for simplified Thread Local Storage, which is
key in supporting Delphi applications
Support for code relocation fixups in dlls if you care
about packing dlls. Recall ActiveX controls are dlls
too, as are other common things you might be
interested in packing

* Support for some stuff that must be available even in
the compressed form. This includes some of your
resources and export names in dlls
Dealing with bound imports

* Support for stripping out directory entries that will
confuse the Windows loader since the decompression
won't have happened and they will point to nothing
useful, like the TAT and debug info

* Support for doing relocation fixups manually on your
decompression stub since it will certainly be in a
different memory location than where the linker
thought it would be when it was compiled

* Dealing with differences in interpretation of the PE
spec between different vendor's linkers. Borland
linkers interpret aspects of the spec differently from
Microsoft's so you need to be ready for that.

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

* Working around bugs in Microsoft code. There is an
infamous one relating to OLE and the resource
section. Many packers do not accommodate this and
this is important for ActiveX support.

4 First Step

OK, enough of the horror stories. The first step is to get
painfully familiar with the file format of executables.
This is called the 'Portable Executable' format, or PE for
short. I will discuss it briefly here. You will need more
detail in reality. Rather than attempting to duplicate
that, here are some references you will find helpful:

The Portable Executable File Format from Top to
Bottom

http://mup.anticrack.de/Randy%20Kath%20-
%20PE%20Format.html/]Thttp:/mup.anticrack.de/Randy
%20Kath%20-%20PE%20Format.html

a good and readable discussion, but not totally accurate
when it comes to the import section. Dead wrong in
implying that these sections always exist -- they easily
can not exist. Still, a good read.

An In-Depth Look into the Win32 Portable Executable
File Format pts 1 and 2
/M**p://www.msdnaa.net/Resources/Display.aspx?ResID
=1083]http://www.msdnaa.net/Resources/Display.aspx?
ResID=1083
/Mm**p://www.msdnaa.net/Resources/display.aspx?ResID
=1323]http://www.msdnaa.net/Resources/display.aspx?R
esID=1323

great article, weak on discussion of resource section

Microsoft Portable Executable and Common Object File
Format Specification
//h**p://www.microsoft.com/whdc/hwdev/hardware/pecof
f.mspx]http:/www.microsoft.com/whdc/hwdev/hardware
/pecoff.mspx

horse's mouth. Dry. Accurate.

5 Next Step

OK, after you've gotten familiar with those, we can start
to write some code. I'm going to save that for the next
installments (probably two). They will detail:

* Making the Unpacker Stub
The stub has several responsibilities aside from the
obvious decompression. It also has to perform duties
normally done by the Windows loader.

CodeBreakers Magazine — Vol. 1, No. 2, 2006

* Making the Packer Application
The packer application does all the hard work. This
makes since when you realize the stub is supposed to
do as little as possible to have a minimum impact on
runtime.

I'll try to keep code examples to a minimum but there
may be some reference to structure members when
describing what's going on and maybe a snippet or two
where code is clearer than human language. Most of the
important structures can be found in WINNT.H for those
who wish to read ahead.

6 Continuo

Last installment I mentioned some of the big-picture
aspects of creating an exe packer. In this installment I
am going to talk about a particular part of the packer,
the decompression stub. This is the simpler part. In the
next installment(s) I'll talk about the packer application
itself. Again, this isn't going to be source for a packer, but
I might do a straightforward one and publish it as an
addendum to this series if folks are interested in having
some working source as a starting point.

The decompression stub has several responsibilities:

* Find the packed data
* Restore data contents
* Perform relocation fixups

* Resolve all imports since the Windows loader couldn't
do it

* Perform thread local storage duties since the
Windows loader couldn't do it

* Boink over to the original program

* You may also have to handle being reentered if you
are packing a dll

Oh, and it also has to run. So lets start with that...

7 A Stub That Runs

It's useful to remember that your decompression stub is
actually a parasite onto a program that was never
expecting for it to be there. As such, you should try to
minimize your impact on the runtime environment in
your packer. I had mentioned before that you could make
a packer in Logo or Object-Oriented COBOL, and that
really was only partially true. You can make the packer
application that way fer sure -- and you might even be
able to make the unpacker that way sometimes -- but you
will really be much happier with C/C++/ASM for the stub
part. I personally like C++. Anyway, it will be smaller. If
you don't care about the size, still using stuff like Delphi
or VB for the stub would be problematic because it hoists

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

in subtle stuff like TLS and runtimes, and they don't
have primitives needed to thunk over to the original
program. Plus it can hose COM stuff that the original
app isn't expecting. So let's assume the unpacker will be
in the lower-level languages I spoke of and take solace
that this is pretty straightforward code, and that the
packer still can be in whatever.

Since the stub is a parasite, and since it will have to be
located in a spot at the original application's convenience,
we will have to be relocating it dynamically in the packer
application. To help with this we will make the stub with
relocation records. These are usually used for dlls when
they can't be loaded at their preferred address. We will
make use of them when binding the stub to the original
application.

If youre an avid ASM coder, many things are more
straightforward since you can take care to produce
position-independent code. This won't necessarily free
you from all relocation concerns, however. The
decompression library of choice may well not be position
independent. Also, and references to global data will
need to be fixed up.

8 Choice of Compressor

You can pretty much use whatever compressor library
you want, so long as you build it in a way that doesn't
spew out stuff via printf or other UI functions. There are
plenty free compressors out there. You might want to
start with something like zlib. It won't give you the best
compression, but I know it works in this scenario. Also,
another is UCL. This compresses better and is much
smaller code-wise. It is GPL, however, and maybe you
care about the licensing implications.

Check the docs to the compressor you want for
configuration options and related stuff. For example,
BZip2 requires BZ_NO_STDIO to be defined to have no
printf stuff.

Configure the build to be compatible with the stub and
compression library. For me, I disable RTTI and make
sure I am linking the static runtime library,
multithreaded. I optimize for size. The output should
produce a static library, of course, rather than a dll, since
the goal is to add no dependencies beyond the apps
original ones.

Setting Up Projects -- and now for something completely
different

OK, I am going to take a brief break from code and
technological stuff and talk about project configuration.
Normally I wouldn't since that's a personal choice,
however this time I will because things I talk about later
will be dependent upon some of the configuration

CodeBreakers Magazine — Vol. 1, No. 2, 2006

assumptions. In real life you don't have to do it this way,
but let's temporarily pretend we are and at the end of
this series you'll know how you might like to do it
different.

Big picture is that there will be two projects, producing
two distinct executables -- the packer stub and the packer
application. Their configuration will be significantly
different.

We are going to do a bit of ledgerdemain with the stub
project which will be explained later, but for now,
configure a boiler plate project for your stub thusly:

* Produce a DLL
* Use static multithreaded runtime libraries

* Disable RTTI and exception support

If there are options for the boilerplate code it generates,
make it simple, so that there is just DIIMain being
implemented. We're going to throw all that away anyway.
Go ahead and build it as a sanity check, which should go
through fine.

We're making the packer stub a DLL not because it will
ultimately be a DLL -- it won't. We're doing this because
we want the relocation records. You _can_ create it as an
exe project and cause it to have relocation records (linker
option /FIXED:no), but I find the Microsoft's linker will
crash randomly in that configuration. Stick with the DLL
config and you'll be OK.

Next, change the config thusly (this is for Microsoft's
tools, you'll have to look up the equivalents for Borland's
or gce):

Linker options:

add any library paths your compressor lib will be
needing

/nodefaultlib don't use default libs

/map(filename) DO generate a mapfile

remove /debug don't generate debug info

change /incremental:yes to /incremental:no disable
incremental linking

Compiler options:

add any defines or header paths your compressor lib
will be needing

/FAcs generate listing files with source, assembly, and
machine code

/Fa(filename) specify where these listings go

remove /GZ compiler-generated stack checks

remove any debug options, it won't help us where we're

going

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

these options are probably available as checkboxes, so
you won't have to manually add them.

The gist is that we are not going to have normal debug
capabilites so we turn off that stuff. Instead, we will be
relying on the listing of the compiler-generated assembly
to see code and the linker-generated mapfile to see actual
addresses. All this is interesting stuff in any project
really, but it is all we have for debugging in this one.

If you build now you will should get a linker error
complaining about an unresolved external symbol
DIIMainCRTStartup@12. This is good! If you don't get
that then the default libs are coming in. The symbol is
possible different for Borland stuff. Other errors probably
mean something else needs to be fixed; this is the only
one you should get for Microsoft's compiler.

9 Runtime dependencies

You cannot assume what runtime dependencies the
original app has. Thus, you cannot make calls to funky
dlls (vbrunX.dll, etc). You have no idea if they are there.
You will do well to statically link your runtime library.
You will do much (much) better, however, to not link any
runtime libraries at all! ASM coders will take delight in
this fact already, because they are hard-core, but this
need not dissuade the C/C++ coders who are accustomed
to malloc() stremp() new std::vector<> or such. All this is
doable. You will just have to provide your own
implementation of these functions. Fortunately, this is
pretty easy since you can call native functions exported
by Kernel32.dll. /That/ dll is certainly present, and
certainly one that is already used by the original app you
are packing so feel free to use it when you like.

10 Making a Trivial C
Runtime to Link Instead of the
Proper One

Replacing the C Runtime might sound scary but
remember we only want to implement what is necessary;
this will turn out to be a small set of things. The linker
will help you figure out what these are. Recall that we
turned off default library searching with the /nodefault
switch (or equivalent for your Ilinker, that's for
Microsoft's). If you configured as I suggested above, we've
got a linker error already: DIIMainCRTStartup@12 We'll
fix that one first.

Discard your boiler-plate DIIMain. Replace it with:

CodeBreakers Magazine — Vol. 1, No. 2, 2006

BOOL WINAPI _DIIMainCRTStartup (HANDLE,
DWORD, LPVOID)

{

//(program will go here)

return TRUE;

}

This should resolve the linker error and will be our entry
point. The place our program will ultimately go is
indicated by the comment. Ultimately we'll never hit the
'return TRUE' statement; it's just there to make the
compiler happy, and the function signature is what it is
to make the linker happy.

If you want to be more arty, you can do the following:

#pragma comment (linker, "/entry:\"StubEntryPoint\"")
void declspec (naked) StubEntryPoint() {

/l(program will go here)

}

which is syntactically clearer.

This is cosmetic so don't feel bad if you find the
equivalent pragmas for your compiler/linker. Also, this
perverts what the compiler normally thinks about and I
have seen it crash randomly. I have found when the
compiler gets in a crashing mood, that putting in:

asm nop

in a couple places seems to get it back on track. Ain't that
a laugh?! Whatever...

As code is added, you should periodically build. The
linker will add more and more complaints like above and
we will have to implement the underlying methods the
compiler is emitting references to. Here's a tip: when you
installed your dev tools, you may have had the option to
install the source to the C Runtime. It will be helpful in
some cases since you can cut and paste some parts. In
particular, a function:

extern "C" declspec (naked) void _chkstk(void)

is sometimes emitted by the compiler quietly (if you have
a large array on the stack, like for a buffer). Just cut-and-
paste that one; it's funky.

FYI, I typically have to implement:

memcpy
memset
mememp
malloc
free
realloc

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

calloc
operator new (unsigned int nSize)
operator delete (void* pv)

To get you going on what it means to do this sort of roll-
your-own-C-runtime, please see the following article. It's
good and will save me from repeating the infomation
here. There's sample implementation as well.

Reduce EXE and DLL Size with LIBCTINY.LIB
http://msdn.microsoft.com/msdnmag/issues/01/01/hood/d
efault.aspx]http:/msdn.microsoft.com/msdnmag/issues/
0...od/default.aspx

OK, we're now setup to do the work!

11 Unpacking Stub
Responsibilities

I mentioned way back that the stub has the following
duties:

* Find the packed data

* Restore data contents

* Perform relocation fixups, if needed

* Resolve all imports since the Windows loader couldn't
do it

* Perform thread local storage duties since the

* Windows loader couldn't do it

* Boink over to the original program

* You may also have to handle being reentered if you
are packing a dll

It's important that the stub restore the original data to
it's exact original location. This is because we don't know
about what references are in the original code to things
like global data structures and functions pointers in
things like vtables.

Recall that the format of the PE file (links to good
discussions were provided in the previous installment) is
organized into sections, which have a location and size.
This information is stored in the section headers, which

describe where the sections go in memory (relative to the
load address).

To do this properly, we will be needing to know our load
address. If we are a stub for an exe we can simply do a
GetModuleHandle(NULL) and the returned module
handle is the base load address. This won't work for a dll
however. The module handle for the dll is on the stack.
We can write some code to get it, or we can choose not to
do the 'arty entry point' and it is referenceble as a
parameter (do not attempt to reference those parameters
if it is the stub for an exe unless you are fond of crashes).

CodeBreakers Magazine — Vol. 1, No. 2, 2006

My preferred technique, however, is to get the packer
application to help me out. That way the same stub
works for exes and dlls and in the same way. It involves a
global variable, and there are going to be several of those,
so let me discuss that first.

12 Packer Parameter Globals

There are going to be parameters that are computed by
the packing application and that will be embedded in the
stub so it can do it's work at runtime. These require a bit
of special handling because the packer application needs
to find these items at pack time. You could hard-code in
the addresses into the packer. You would get these
addresses from the mapfile generated by the linker. This
is a bit tacky because you will have to double check it
each time you alter the stub, which will be quite
frequently while developing. Instead, I prefer to do a bit
of legerdemain with structures, sections, and segments.
This only needs to be done for the variables published to
the packer. Regular globals you might want to have can
be done as usual without concern.

First, simple stuff. I make one structure with all the
important globals. Then one global instance of that
structure. Thus there is only one object the packer has to
locate at pack time. Let's call that structure:

//in a header, say GlobalExternVars.h
struct GlobalExternVars

{

//stuff goes here

b

Now we will do some kookiness in our main .cpp file:

#pragma data_seg (".A$A")

declspec (allocate(".A$A")) extern struct
GlobalExternVars gev =

{

/finitializers go here

b

#pragma data_seg ()

What the Hell is that? Well, it creates a special data
section for our global variables. Dirty little secret about
the linker is that it sorts the section names lexically, and
discards the portion at the '$' and after. By naming the
section .A$A' we will be forcing the global vars structure
to be at the very beginning of the data section, which will
be easy for the packing application to locate. Next, we
will merge some sections with the following linker
options. You can put these on the link line, or you can be
fancier and place them in the code with a pragma (if your
tools support such). I think putting them in the pragma
makes it more obvious from the code standpoint that the
stuff is fragile and should be handled carefully if changes

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

are needed.

#pragma comment(linker, "/MERGE:.rdata=.A")
#pragma comment(linker, "/MERGE:.data=.A")
#pragma comment(linker, "/MERGE:.bss=.A")

So the global data (and don't forget your compression lib
might have some too) will all be merged into one section,
with the external variable structure at the very
beginning. Oh, notice that I merged .bss in too. This has
a subtle simplifying effect. .bss is used to hold
uninitialized globals. These don't normally take up file
space (since they are uninitialized) but they do take up
memory. The packer will have to take this in
consideration when laying out the actual stub it builds.
By merging it into the data section, it will take up actual
file space and thus the packer won't have to worry about
it. There will be very little .bss at all so don't be
disturbed about it taking up space; we're talking bytes.

13 Computing the Load
Address

OK, regardless of whether you have used my technique
for publishing packer globals or rolled your own, let's
assume that it is done. Now, the original point was that
we would be needing the the base address at runtime in
the stub so that we can convert Relative Virtual
Addresses (RVAs) to actual Virtual Addresses (VAs).
Recall the VA = RVA + base address.

My technique is to have a published global which is the
RVA of the stub entry point. The packer sets this up. The
stub then takes the address of the actual entry point,
subtracts the RVA computed and stored by the packer,
and the result is the load location of the packed
executable. I store this result in a 'regular’ global (which
doesn't need to be part of the GlobalExternVars).
I do this first thing in the main stub entry point thusly:

//global var
DWORD load_address = 0; /computed actual load
address for convenience

//in the stub entry point function
load_address = (DWORD) StubEntryPoint-
gev.RVA_stub_entry;

Note, if you did not do my entry point rename trick, you
would use the name of your funtion instead, possibly
_DIIMainCRTStartup. This technique always works
regardless of wether the appliaton is a DLL or EXE.

Once you have the load address you are all set up to
decompress to the proper location.

CodeBreakers Magazine — Vol. 1, No. 2, 2006

14 Decompressing the
Original Data

The compressed data is stuff attached by the packer. Like
the stub, it will have stuck it somewhere. It can located
most anywhere you like. A popular choice is to locate it at
the _end_ of where the original data was located. Then,
decompressing that data from start to finish to it's
original location causes the data to be ultimately be
overwritten. Fancy. This will only work of course if the
compressed data is smaller than the original, but we
generally hope that our compressor actually, ubh,
compresses, and makes things smaller.

The compressed data is located somewhere placed by the
packing application. Where? Who knows. There will be
needed a published external global specifying where and
setup at pack time. So add a
DWORD RVA_compressed_data_start;
DWORD compressed_data_size;

to the GlobalExternVars struct. Transforming the RVA to
the VA by adding the load_addresss previously computed
will tell you where the compressed data is located at
runtime.

The specific format of your compressed data is completely
up to you. Since essentially we will be restoring data to
original locations, which are chunks (the sections of the
original PE file), the simple stream format of:

struct original_directory_information
dword section_count

section 1 header

{

dword RVA_location

dword size

}

(section 1 compressed data)

The original_directory_information is the stuff in the
DataDirectory member of the
IMAGE_OPTIONAL_HEADER of the PE headers of the
original app. The packer will have changed these values
to be suitable for the stub, so it will need to stick the
original in the compressed stream so we can get to those
values at runtime. This will suffice for the stream. Feel
free to add whatever you might like to it as well. The
decompression routine pseudo-code is:

struct section_header {
DWORD RVA _location;
DWORD size;

IS

//'regular' non-published global
IMAGE_DATA_DIRECTORY origdirinfo
IMAGE_NUMBEROF_DIRECTORY_ENTRIES;

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

CodeBreakers Magazine — Vol. 1, No. 2, 2006

* whiz through the records getting the DWORD at the
address they indicate and add the offset

void decompress_original_data() {

void* pvCompData = (void™*)

(gev.RVA_compressed_data_start + load_address);

initialize_compressor (pvCompData,

Pretty straightforward. The format of the relocation
records is a little bit odd and is structured the way it is

gev.compressed_data_size;); presumably for size considerations. The records are
organized as a series of chunks of records, one chunk per
decompress_data (&origdirinfo, sizeof(origdirinfo)); page. The records in the chunk reference an offset into

the page. Additionally, for padding consideration there
are records that are essentially no-ops and should be
ignored. Pseudo-code follows:

int section_count;
decompress_data (§ion_count, sizeof(section_count))

’

void perform_relocations () {

for (int i = 0; 1 < section_count; ++i) { ! -
//see if no relocation records

section_header hdr;

decompress_data (&hdr, sizeof(hdr)); if o
void* pvOrigLoc = (void*) (hdr.RVA_location + (origdirinfolMAGE_DIRECTORY_ENTRY_BASERELO
load_address); - C.VirtualAddress == 0)

- ’ return;

decompress_data (pvOrigLoc, hdr.size);

} //lcompute offset

cleanup_compressor(); IMAGE_DOS_HEADER* dos_header =

} (IMAGE_DOS_HEADER¥*) load_address;

IMAGE_NT_ _HEADERS32* nt_hdr =

This will be called in the main entry point of the stub (IMAGE_NT HEADERS32%)

right after computing the actual load address. &((unsigned char*)load_address)dos_header->e_lfanew;
DWORD reloc_offset = load_address - nt_hdr-

That's it! What could be easier? Well, notice that we're >OptionalHeader.ImageBase;

using a stream model for our compressor. Most

compression libraries come pretty close to implementing //if we're where we want to be, nothing further to do

if (reloc_offset == 0)

that but you have to do ever so slightly more to make it
return;

that simple. I wrap up my compressors in a class so that

they all implement the above interface to make things //gotta do it, compute the start

simple like above. Swaping out compressors then just IMAGE_BASE_RELOCATION* ibr_current =
means making a new adaptor class. The rest of the stub (IMAGE_BASE_RELOCATION*)
need not be touched to put in different (origdirinfolMAGE_DIRECTORY_ENTRY_BASERELOC

compressors/encryptors. .VirtualAddress + load_address);

/lcompute the end

Now that all the original data is decompressed into it's IMAGE_BASE_RELOCATION* ibr_end =
original location, we have to do stuff that the Windows (IMAGE_BASE_RELOCATION*)
loader normally does. This includes relocation fixups, &((unsigned
imports lookup’ and TLS lnltlallzatlon/thunklng char*)ibr_current)origdirinfo[IMAGE_DIRECTORY_EN
TRY_BASERELOC.Size];
15 Performing Relocation /Mloop through the chunks
- while (ibr_current < ibr_end && ibr_current-
F IXU pS >VirtualAddress) {

DWORD RVA_page = ibr_current->VirtualAddress;

This is really only necessary for packed DLLs since EXEs int count_reloc = (ibr_current->SizeOfBlock -

are supposed to be always loaded at their preferred base IMAGE_SIZEOF_BASE_RELOCATION) /
address. In fact, relocation records are usually stripped sizeof(WORD);
from EXEs so there's nothing to process. WORD* awRelType = (WORD*)((unsigned
. . o char*)ibr_current +
Details of the relocation record format are sufficiently IMAGE_SIZEOF_BASE_RELOCATION):
detailed in the articles reference in the first installment. for (inti = 0; i < nCountReloc; ++i) {
For us to process them we: WORD wType = awRelTypenldx >> 12;
WORD wValue = awRelTypenldx & 0xOfff;
* compute an offset of the preferred base address and if (wType == IMAGE_REL_BASED_HIGHLOW) { //do it
the actual load address *((DWORD*)(RVA_page + wValue + load_address)) +=
reloc_offset;
 find the relocation records from the original directory }

information we just decompressed

© CodeBreakers Journal, http:/www.CodeBreakers-Journal.com

ibr_current = IMAGE_BASE_RELOCATION¥)
&((unsigned char*)ibr_current)ibr_current->SizeOfBlock;
}

}

This is the majority of what is needed to support DLLs.
There is a little bit more discussed later. Given that this
is so straightforward, I'm a little surprised at the number
of packers out there that do not support DLLs.

The next major thing we have to do is to resolve all the
imports. This is only a little more involved that the
relocation records.

16 Resolving Imports

Resolving the imports consists of walking through the
Import Address Table of the original application and
doing GetProcAddress to resolve the imports. This is very
similar to the relocation record logic that I won't do a
pseudo-code example. Details of these structures are
given in the links provided in the first installment. The
structures all start at:

origdirinfolMAGE_DIRECTORY_ENTRY_IMPORT.Virtual
Address

There are a couple caveats I should mention however:

* The structures are wired together via RVA pointers.
These need to have the load_address added to make a
real pointer

* The pointers in the structure to strings are real
pointers. These _do_not_ need the load_address
added. Relocation processing will have already fixed
these up.

Don't forget about importing by ordinal. You will know
this is happening because the pointer to the string will
have the high bit set ((ptr & 0x8000000) != 0).
Borland and Microsoft linkers do different things, so you
have to be prepared to get the string from either of
different spots. Basically, there are two parallel arrays,
the ImportNameTable which you get from:

IMAGE_IMPORT_MODULE_DIRECTORY.dwImportNa
meListRVA

and the ImportAddressTable which you get from:

IMAGE_IMPORT_MODULE_DIRECTORY.dwIATPortio
nRVA

The ImportNameTable is optional. Borland doesn't use it.
If it is present, you should use it to get the name of the
function and GetProcAddress() it's pointer (the

CodeBreakers Magazine — Vol. 1, No. 2, 2006

IMAGE_IMPORT_MODULE_DIRECTORY.dwModuleNa
meRVA has the name of the dll you will need to
LoadLibrary() on). Once you get the address, you stick it
in the parallel location in the ImportAddressTable array.
You do this for each member.

In the case when the ImportNameTable is not present,
however, as with Borland's linker, you must get the
address of the function name from the
ImportAddressTable itself. Then you overwrite it with
the function address.

It is important to use the ImportNameTable
preference to the ImportAddressTable because of a thing
called 'bound executables'. If you want to test your work
on a bound executable, consider that notepad.exe is
bound.

in

After processing each DLL you may or may not wish to
do a FreeLibrary. It's going to depend on how you
implement your packer application. We'll discuss that in
the next installment, and it relates to 'merged imports'.
For now, suffice it to say that if you perform merged
imports, you can call FreeLibrary, but if you do not, you
must not call it. You might want to put the call in and
comment it out while developing until you have merged
imports implemented. Merged imports is important for
properly supporting TLS that potentially exist
implicitly loaded DLLs. This leads into the final
responsibility for the stub, which is handling TLS
support.

in

17 Supporting TLS

Thread Local Storage, or TLS, is a handy programming
mechanism. We don't care mostly, since we're not using
it, but the original application to be packed might be
using it indeed. In fact, Delphi always uses it, and so if
we're going to support packing Delphi apps, we better
accomodate it.

TLS fundamentally is done via API calls. In general, you
allocate an 'index' which you store in a global variable.
With this index you can get a DWORD value specific to
each thread. Normally you use this value to store a
pointer to a hunk of memory you allocate once per
thread. Because people thought this was tedious, a
special mechanism was created to make it easier.
Consequently, you can write code like this:

declspec (thread) int tls_int_value = 0;

and each thread can access it's distinct instance by name
like any other variable. I don't know if there is an official
name for this form of TLS, so I'll call it 'simplified TLS'".
This is done in cooperation of the operating system, and
there are structures within the PE file that makes it
happen. Those structures are contained in a chunk that

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

is pointed to by yet another directory entry:

origdirinfolMAGE_DIRECTORY_ENTRY_TLS.VirtualA
ddress

The problem is that the processing of this information
happens by the OS on the creation of every thread prior
to execution being passed to the thread start address.
This would not normally be a concern for us, except that
at least one thread has been started before we can
unpack the data: our thread! What we have to do is set
up a fake TLS management section to capture what the
OS has done before we started, then manually copy this
information to the original app as our last step.

For this, I add two items to the external global packer
data structure:

GlobalExternVars

{

//(other stuff we previously described)
IMAGE_TLS_DIRECTORY tls_original,
IMAGE_TLS_DIRECTORY tls_proxy;

b

The packer application will copy the original data to
tls_original for our use at runtime. tls_proxy will be
almost an exact copy, except two items will not be
modified from the stub:

tls_proxy.AddressOfIndex
tls_proxy.AddressOfCallBacks

In the stub we will inialize the AddressOfIndex to point
to a normal global DWORD variable, and we will
initialize AddressOfCallBacks to point to an array of
function pointers in the stub. The function pointers array
is a list of things that is called whenever a new thread is
created. It is intended to be used for user defined
initialization of the TLS objects. Alas, no compiler I have
seen has ever used them. Moreover, on the Windows 9x
line, these functions are not even called. Still, we support
it in case one day they are used. We point the
AddressOfCallbacks to an array of two items, one
pointing to a function of our implementation, and the
second being NULL to indicate the end of the list.

There will be a global DWORD for the TLS slot:

DWORD TLS_slot_index;

The TLS callback function must be of the form:

extern "C" void NTAPI TLS_callback (PVOID DIllHandle,
DWORD Reason, PVOID Reserved);

also you add two global booleans indicating that it is safe

CodeBreakers Magazine — Vol. 1, No. 2, 2006

to invoke the original callbacks, and to indicated that
there is a deferred call. Initialize these globals thusly:

bool safe_to_callback_tls = false;
bool delayed_tls_callback = false;

and provide some auxilliary globals to hold data that is
delayed:

PVOID TLS_dll_handle = NULL;
DWORD TLS_reason = 0;
PVOID TLS_reserved = NULL;

the thunk implementation proceeds as such:

extern "C" void NTAPI TLS_callback (PVOID DllHandle,
DWORD Reason, PVOID Reserved) {

if (safe_to_callback_tls) {
PIMAGE_TLS_CALLBACK?* ppfn =
g_pkrdat.m_tlsdirOrig.AddressOfCallBacks;
if (ppfn) {

while (*ppfn) {

(*ppfn) (DIIHandle, Reason, Reserved);
++ppfn;

}

}

} else {

delayed_tls_callback = true;

TLS_dll_handle = DlIHandle;

TLS_reason = Reason;

TLS_reserved = Reserved;

}

}

This will provide a place for the OS to store the slot info,
which we will later restore, and if it does call thunks
then we will capture the parameters for later when we
will invoke the original thunks after decompression.
Again, this is all done because the OS will be doing this
stuff before we have a chance to decompress. After we
decompress, we pass the call straight to the original
application.

We handle this last step like so:

void Finalize TLSStuff() {

if

(origdirinfolMAGE_DIRECTORY_ENTRY_TLS.Virtual
Address '=0) {

*gev.tls_original.AddressOfIndex = TLS_slot_index;
void* TLS_data;

asm

{

mov ecx, DWORD PTR TLS_slot_index;

mov edx, DWORD PTR fs:02ch

mov ecx, DWORD PTR edx+ecx*4

mov pvI'LSData, ecx

}

int size = gev.tls_original. EndAddressOfRawData -
gev.tls_original.StartAddressOfRawData;

memcpy (pvTLSData, (void*)

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

gev.tls_original.StartAddressOfRawData, size);

memset ((void*) gev.tls_original. EndAddressOfRawData,
0,

gev.tls_original.SizeOfZeroFill);

}

safe_to_callback_tls = true;

if (delayed_tls_callback) {

TLSCallbackThunk (TLS_dll_handle TLS_reason
TLS_reserved);

}

}

Once you have done that, it is finally safe to call over to
the original program. You should have a published
external global that will be set up by the packing
application that specifies the original program's entry
point. I will call it

DWORD orig_entry;

which will be a member of GlobalExternVars. It will be
initialized to an RVA and we will fix it up to a VA by
adding the load_address. This done only once on the first
pass, of course.

For EXEs, the entry point will never return. For DLLs it
will. Moreover for DLLs there are the original
parameters which must be pushed. This brings us to the
final topic, the last bit needed for DLL support.

18 Last Bit for DLL Support

EXEs go into their entry point only once, and with no
parameters (remember, this is not main(), but well before
that). DLLs, on the other hand enter at least twice and
perhaps once per thread. Obviously, the stuff we did
before (the decompression, relocs, imports, TLS) only
needs to be done once. Easy enough, add a global boolean
that indicates that stuff was done and set it to true after
the first pass.

The slightly more tedious thing is producing a stub that
works for DLLs and exes, since you will want to return
the value.

What I like to do is make use of the declspec (naked)
attibute I applied to the StubEntryPoint. This causes the
compiler to emit no prolog and epilog code. Consequently,
if we don't mess with the stack, we can do and assembly
jmp to the original entry point, and the right behaviour
will happen if we are an EXE or a DLL. Thusly:

asm jmp gevt.orig_entry;

And all should be running.

CodeBreakers Magazine — Vol. 1, No. 2, 2006

19 Afterthoughts on Stubs

Looking at other packers, I have seen some slightly
different stub techniques. I think the most interesting is
UPX, where the packer actually acts somewhat like a
linker, building the stub code dynamically and including
only what is necessary at pack time.

You can implement the stub in the fashion of your
choosing, and you can omit features you don't think will
be necessary in your particular application.

20 What's Next

OK, this was a good bit longer than I expected. Still, I
wanted to communicate as much as possible the details
so that others won't have had to spend as much time in
the debugger as I had. Debugging a compressed exe is a
major pain because the debugging info is all useless so
you have to do it in assembly.

Next installment will cover the packer application, which
will be much more straightforward from the standpoint
of configuration, but will have much more work to do
than the stub.

21 Continuo

This series is about creating exe packers for Windows 32-
bit PE files.

In the previous installment I described how to create a
decompression stub that would be bound to an existing
executable. In this (final?) installment I'm going to
describe the actual packer application, which binds the
stub to an arbitrary executable and sets up parameters
the stub will need at runtime. Additionally, it will
perform some duties normally done by the OS loader.

The packer application will wind up being the biggest
hunk of code for the project. Fortunately, it will be fairly
straightforward.

22 First Things

There are some basic things to setup or consider before
we get moving with the actual packer.

22.1 Project Configuration

As mentioned in the previous installment, configuration
is a function of your particular design. For the sake of
discussion in this article we are assuming a design where
the decompression stub is produced as a dll. The binary
of that dll will be incorporated into the packer
application as a binary resource. None of this is strictly
necessary. The stub 'dll' will never exist in the real world

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

as such since we are going to snip out interesting pieces.
You could just as easily use a tool to spew just the
interesting pieces to binary resources, or encode them as
static data in a C source file. This choice is per taste and
we are going to choose the resource approach. We are
also going to be a command-line app. So...

Configure your project as a command-line (console)
application. Create a RC file and include a resource that
is the stub 'dll' produced by your previous project. That's
really it for configuration. I'm sure that will be a welcome
simplification after having set the stub project!

22.2 Utility Code

There are going to be some things that are simple, but
very tedious, and you will probably like to produce some
machinery to tend to these tasks.

One such task relates to translating addresses. We have
to do this in a couple places for different reasons, so you
might consider making some sort of general purpose
address translator. It will need to handle several distinct
ranges of addresses being mapped independently to other
ranges. In practical terms, there won't be a huge number
of range mappings (like about 5), so if you want to just
keep a list of range mappings and do a linear search no
one will chastise you.

Another tedious thing (I find) is reading little bits and
pieces from the original executable file. This is
particularly true when navigating a network of objects
since you have to run along pointer paths. To make this
much more bearable I use a memory-mapped file for the
original executable. Read-only access is fine since we
won't be altering the original (BTW, if for some reason
you do want to write to the mapped image, but not
disrupt your original file, remember you can map it copy-
on-write. I've done this for some protectors.) I don't use
this approach for the output file, however, because most
of that will be sequential write.

Lastly, I would like to reiterate that the pointers in the
executable are RVA's. This means you will need to do
two things to transform them to real pointers. First, if
you've mapped the image to an address, you will need to
add that base address. The stub 'dll' compiled in as a
resource will be accessed through a memory address once
we LockResource() on it. That address is the base
address. Now, that's all you have to do on a running
module (i.e. one the OS loader mapped in), but that's not
all we have to do. The second thing we have to do is
consider the file and section alignment of the executable
(do _not_ assume they are they same). The net result of
this is that there will need to be an adjustment on a per-
section basis to the resultant pointer. Again, this is not
necessary for a module loaded by the OS loader into

CodeBreakers Magazine — Vol. 1, No. 2, 2006

memory since it has mapped the sections appropriately.

So, I would further suggest creating a utility class that
incorporates the address translator mentioned earlier
(along with logic to initialize it) that can provide
translated access from RVA to physical pointer for
regions within a PE file. Stick in an RVA, get out a
physical memory pointer. We can use this device for both
the memory-mapped original, and also for the resource-
loaded stub. You don't have to do this but it will make
your life easier. This is a plus because it's already going
to get a little harder as it is wink.gif. You may wish to
throw in a couple other convenient PE-specific items, like
pointers to the image headers. We'll be using various
fields in these headers at several points throughout the
packing process.

One other thing that will make you happier in the long
run is to produce some sort of wrapper for your
compression library of choice. In doing so you can both
simplify use of the library and also be able to swap out a
different compressor should you choose. For example:

class Compressor {

public:

Compressor (HANDLE hFile); //create; write to given
file at current file pos

void InsertData (const void *pv, int size); //stick some
uncompressed data in

void Finish(); /finish any pending writes

DWORD CompressedCount(); /count of output
(compressed) data

b

This sort of interface I have found to be suitable for all
compression libraries I have considered, though of course
I wouldn't use it for things other than this exe packer.

Other than that you might like to make a general-
purpose resource tree walker, but we'll discuss that later
in the implementation. Making this part generic is
mostly useful if you wish to reuse it in other projects.

With that being said, we are ready to move onto the...

23 Basic Tasks

Here are the fundamental things the packer will need to
do.

* Determine Size of original

* Setup new section(s); modify originals

* Create and add stub outside this region
* Preserve export info

* Fixup TLS stuff

* Relocate the Relocations

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

* Compress and stow original data
* Process the resource directory

* write out the results

and a couple minor fixups like changing the entry point
and some of the directory entries.

24 Details

Here are the details of each of these tasks.

24.1 Determine Size of Original

This is the easiest task as it is indicated in the PE
header of the original. It is located at:

IMAGE_NT_HEADERS::OptionalHeader.SizeOflmage

This is important, because this determines the start of
where we will bind our stub. After we bind our stub we
will update this value to include the stub's additional
size.

24.2 Setup New Section(s);
Modify Originals

Sections, which are basically areas of the file that the
loader allocates and possible memory-maps to regions in
the running process' address space, are described in the
PE header. They can take up zero disk space, when tells
the loader to allocate the memory, but not to map part of
the file in (e.g. this is routinely done for sections like
uninitialized data.)

Since we are going to pack the application, and since we
will have to initialize it ourselves (i.e. the loader can't do
it for us) we will need to modify the existing section
headers. In particular We will need to modify the
‘characteristics' of the section to convert them all to
writeable since we will be writing when decompressing
(IMAGE_SECTION_HEADER::Characteristics). Also, we
need to modify the size of compressed sections to 0
(IMAGE_SECTION_HEADER::SizeOfRawData). The
PointerToRawData need not be modified, but I usually
set it to 0 anyway.

It's worth noting that the section names have not
meaning whatsoever (with one exception I shall note),
and you can change them at-will. They are purely
mnemonic. The important bits of data that may be
broken into sections (or combined with existing sections)
are all located through the 'directories' located at
IMAGE_NT_HEADERS::OptionalHeader.DataDirectory.

Now for the exception: due to a defect in the internal
implementation of OLE automation, one section, the
resource section, must preserve its name. The defective

CodeBreakers Magazine — Vol. 1, No. 2, 2006

implementation finds the resources via section name
(.rsrc) rather than looking up in the directory (at
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_RESOURCE.VirtualAddr
ess). The result of this is that you take care in handling
this one. More details on that when we discuss resources.

There are a variety of choices in determining how you
want the new sections to be laid out. Some packers keep
all the original ones, making them 0 size, and adding the
new sections. Other packers consolidate the original
sections into one uninitialized section and append the
new ones. This is largely a matter of personal choice.

For example UPX consolidates the sections and splits the
consolidation in two. The lower-addressed part is named
UPXO0 and is uninitialized. The higher-addressed part is
named UPX1 and contains the compressed data and the
stub. The reasoning behind this choice is apparently that
it has less runtime impact since the compressed data will
ultimately overwrite itself. ASPack on the other hand
leaves the original sections in place and adds two new
ones, one for the stub and one for the stub data
(compressed data presumably). Many packers allow you
to give arbitrary names to the sections as a minor
method of hiding what packer was used. Amusingly,
ASPack allows you to do this for the stub code section (by
default .aspack) but the data section has a fixed name
(.adata). Go figure.

If you're making a new packer then for development
purposes you may wish to simply keep all the sections
and append your new one. Later you can tweak the
section handling stuff since its trivial.

In our example, we're going to stick all the stub code and
compressed data into one section which we will append to
the end. If you're going to do some resource preservation
(like to preserve icons and stuff needed for
COM.OLE.ActiveX like registration stuff) there will be
yet another section added after the stub (because of the
Microsoft OLE bug).

I keep a list of the section headers, keeping a reference to
the stub section on hand. The original sections I setup
once and forget about. The stub section will be
manipulated as we go since we really don't know how big
it's going to be yet until we compress the data. I setup the
name, characteristics and virtual address now since we
know them. I use the following for characteristics

IMAGE_SCN_CNT_INITIALIZED DATA |
IMAGE_SCN_CNT_CODE |
IMAGE_SCN_MEM_EXECUTE |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

which pretty much turns on all access. The
IMAGE_SECTION_HEADER::VirtualAddress I initialize
to:

IMAGE_NT_HEADERS::ImageBase +
IMAGE_NT_HEADERS::OptionalHeader.SizeOflmage

which sticks it at the end of the original exe's PE-mapped
address space. (We'll have to fixup SizeOflmage for the
result later, when we know how be the stub and data is).

This will leave until later the need to fix up the fields:
VirtualSize - how big in memory
PointerToRawData - where in file
SizeOfRawData - how much in file is mapped into
memory.

24.3 Create and Add Stub
Outside this Region

OK, this is the twistiest part, mostly because there is a
lot of pointers to follow and also a bit of translation of
those pointers (in one case we will have to translate the
pointers twice!). Hope you implemented some of that
utility code we mentioned! You can take solace in the fact
that the big picture is quite simple, and so all the
complexity is in managing the indirection.

The big picture of stub creation is appending chunks of
memory, then whizzing through that memory and fixing
up pointers. We have to do the fixups because when we
built the stub project the linker calculated where items
were. We are going to be moving stuff to a place
appropriate for the particular exe we are packing, so the
original calculations will be invalid and must be
corrected.

The way we described the decompression stub project in
installment 2 of this series possibly made you want to
wretch because of the funky linker options and various
pragmas. Well, all that was done to make this operation
more manageable. If you set up the project as described
your resulting stub 'dll' (which I shall call 'stub.dll' for
convenience) should have four sections. This was
achieved via the various /MERGE options for the linker.
The names are not really important, but we want four to
make it easier to find the important stuff. You can use
DUMPBIN.EXE to see what the sections are. I am going
to assume that you have four sections named:

.text - code section

.A - specially organized data section in stub
.idata - import section

.reloc - relocation data

Ultimately we will merge all these together, but we want
them separate in the original stub 'dll' for special

CodeBreakers Magazine — Vol. 1, No. 2, 2006

reasons.

The data section should be distinct because we took pains
to put the public stub data (the stuff we will be fixing-up
for the stub to use at runtime) located at the very
beginning. Having it broken out in the source stub 'dll'
makes it easy to find this important area.

The .idata section usually can be part of the data section,
but we want it separate because we are going to
completely regenerate it. Having it in a separate section
makes it easier to throw out the original (after
processing) and replace it with our new one.

The .reloc section contains the relocation data. Similar to
.idata, we are going to process the original and replace it
with the new contents.

The .text section is not special in itself. It is just what is
left over from not being in the other sections.

If you don't have three sections containing the above
information you may want to revisit your stub
configurations. Again, the particular name is not
important, just the contents.

24.4 Starting to Process the
Original Stub

The stub section will be small, so I build it up completely
in memory before transferring it to the final disk image.
You can use whatever technique for managing the
memory you like, but you might have to do some
reallocations as the section grows. If you use C++ you can
free yourself from this minor chore by wusing a
std::vector<unsigned char> as your buffer. That way you
can append with push_back() or insert() or resize() as you
chose.

We mentioned earlier in Utility Code how you could
create a class for handling the details of accessing
portions of PE files. Both the original application and the
stub 'dll' are PE files and you can use an instance of this
utility class for each of these.

We are going to create the new stub section by appending
the code (.text in the cited example), the data (A in the
example), then imports (.idata) and finally the
relocations (.reloc). As mentioned earlier, since these
sections will be in a location than what the linker
thought, we must fixup internal pointers to reference the
new location. Happily, the linker provided what is
essentially a list of 32-bit values that are virtual
addresses (_not_ RVA's) of all such pointers. We just add
a delta to that value that we compute. To compute that
delta you will need to know where the section it
originally pointed to came from, and where it moved to.

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

You then add this to the 32-bit value located at the place
specified in the relocation record. Tedious? Yes.

To simplify this relocation task I suggest using the
Address Translator utility class mentioned earlier. Then
you just stick your address in and get back what it
translates to. To use this, however, it must be setup. You
setup the translator as you append your sections. Here is
some pseudo-code of how to do it for this example packer:

Merging the code and data sections given:

* buffer of bytes for destination stub section (empty)
* translator (empty)

* original stub 'dll' w/ mechanism to access sections by
RVA

* list of sections in stub 'dll'

e RVA of start of stub section in destination exe
(computed earlier)

» preferred load address of destination exe

then do the following:

 for .text section in stub 'dll'
* append all .text section to buffer

* add entry in translator translating from (original
stub .text RVA start, original stub .text length) to
(RVA dest + buffer.size(),
original stub .text length)

* resize buffer as needed to align on 32-bit boundary

e remember current size of buffer; this will be the index
to public data

» for .A (data) section in stub 'dll'
append all .A section to buffer

* add entry in translator translating from (original
stub .A RVA start,
original stub .A length) to (RVA dest + buffer.size(),
original stub .A length)

* resize buffer as needed to align on 32-bit boundary

OK, at this point we have merged our code and data. We
also have an index that corresponds to where in the
buffer the packer public data is located. Keep that as an
index rather than pointer because as we grow the buffer,
the pointer will become invalid whereas the index will
not. We also have set up the first two section entries in
the translator that will allow us to transform (stub)
original pointers into (stub) destination pointers.

You can see the process is pretty much the same for the
code and data portions of the stub. Really, it can also be
the same for the import section. That is, unless you want

CodeBreakers Magazine — Vol. 1, No. 2, 2006

to support TLS in DLLs. This is an obscure feature
(common in EXEs though) with some subtle problems.
The problems are subtle enough that even Microsoft
advises against using it, and I have never seen it done in
production code.

The problem is that the OS loader allocates TLS at load
time and stuffs pointers in appropriate places. However,
this is a one-shot opportunity and it does not perform
this action if a DLL is loaded later, like when the
application calls LoadLibrary() and such. Consequently
folks are cautioned against using it in a DLL unless you
absolutely, positively, know the DLL will only be loaded
implicitly, not explicitly.

Well, guess what? Unless we take pains to change affairs,
all the original applications DLLs will be loaded
explicitly (by the stub) and thus TLS in the DLLs will
fail. We can change the affairs by manipulating the
imports section to load the application's original DLLs.
We do this by adding bogus import structures that makes
it look like the stub is going to use all the dlls the
original application did.

24.5 Merging Imports Data

If you're developing a new packer, I advise initially doing
the straight-forward append of the imports like you did
for the code and data for starters. This will work for
every real application I have ever seen. After your packer
is working, then you might consider adding import
merging to support the non-existent-but-possible TLS-in-
a-DLL clients.

I'm going to hand-wave through this because it's so
excruciatingly boring and virtually never needs to be
done. I will, however, tell you what you need to do and
you can sift through the headers. If you get the rest of
your packer working, performing this task will involve no
new technology -- just more pointers, translations, and
appends. Briefly, to do this you must:

« Go through
information

the stub's imports; collect this

+ Go through the application's imports; merge this
information (selectively)

+ synthesize a new import section
+ append it with limited fixups

Going through the stub's imports we only really care
about the module name. This list of names will form a
'stop list' which will inhibit merging the original
application stuff. No need to force an import of a module
that is already coming in, and who wants to fixup all the
pointers anyway.

Going through the application's imports, we ignore
modules that come in through the stub. For all others we

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

arbitrarily select an import (I usually just choose the
first) and create a new import descriptor, Import Name
Table, Import Address Table, and strings for such. Your
address translator will be of invaluable help in keeping
track of where all the individual descriptors moved. The
major issue is that you will have to insert data _into the
middle_ of the original stub's import table. This comes
from the extra import module descriptors for the bogus
imports. The result is all the pointers from the stub's
original descriptors become skewed by the amount
additional descriptors. If you stuff in two translation
records for each half you will be OK.

Regardless of whether or not you do the import merging
or simple append, you must still perform a special
relocation pass on the imports data. The reason is that
the pointers in the import section do not have relocation
records! These pointers are RVAs, and thus relative and
thus don't need to be fixed up at load time.
Unfortunately, the thing to which they were originally
relative has changed, and so we must fix them up. It's
pretty straightforward.

Fixing up the import's RVAs means whizzing through the
structures, using the translator to get the translated
address, and saving back the result.

The structure of the imports section is adequately
described in the articles I referenced in installment 1,
and I refer you there for details, however there are a
couple items I would like to point out:

I have never found the declaration of the Import Module
Directory structure in the headers. If anyone finds the
‘official' declaration I would like to know its name and
location. Anyway, it's a simple struct, and here is the
hand-crafted version I use:

struct IMP_MOD_DIR {

DWORD dwINTRVA; /*name table; may not exist*/
DWORD dwTimeDateStamp; /*for bound exes, ignore*/
DWORD dwForwarderChainRVA; /*for bound exes,
ignore*/

DWORD dwModNameRVA; /*name of dl1I*/

DWORD dwIATRVA; /*import address table, must exist*/
b

The import section consists of an array of these
terminated by an empty one.

e The INT contains a list of the ordinal, or name and
hint, of an imported symbol.

* The INT may not exist. Borland shuns the INT
apparently, whereas Microsoft embraces

e The IAT, for an unbound exe, contains the same
information as the INT for an unbound exe. For
Borland (which shuns the INT) the IAT must contain
this information. The net effect is that if the INT

CodeBreakers Magazine — Vol. 1, No. 2, 2006

exists you must process it and copy the result to the
parallel item in the IAT, or you must process the IAT
only.

Some of the items are an ordinal, which means you do
nothing since it is not a pointer. Don't forget to check for
this.

After you have appended the Import section (either the
easy way or the hard) and fixed up the pointers, set the:

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_IMPORT.VirtualAddress
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_IMPORT.Size

to refer to the newly appended area. Go ahead and align
up the size of the buffer to a DWORD boundary for the
next set of appends. Now we are ready to move on to
exports.

24.6 Exports

If you're just packing exe's (and not dlls) you won't have
to worry about this since exe don't typically export
anything. On the other hand, if you _do_ intend to pack
dlls, you will definitely have to deal with it. The exports
section needs to be available even before the stub has a
chance to decompress the original data.

This would be a straightforward append except we have
to fixup RVAs, so we have to traverse the structures
anyway. Fortunately, this is much simpler than what we
(potentially) did for import merging.

There is one root structure --
IMAGE_EXPORT_DIRECTORY -- which is indicated in
the directory of the original exe at:

IMAGE_NT_ _HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_EXPORT.VirtualAddress

After copying that structure over we will need to fixup
the three members:

AddressOfFunctions
AddressOfNames
AddressOfNameOrdinals

to reflect the RVAs of where they will be copied. Append
them verbatim over from the original, one after the other,
following the IMAGE_EXPORT_DIRECTORY structure.

The contents are largely OK as-is except for
AddressOfNames and some special cases of
AddressOfFunctions.

First, we will need to travel across the original

application's AddressOfNames array, appending the

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

name over to the destination and setting the
corresponding entry in the destination's copy of
AddressOfNames to refer to this copy. This is
straightforward.

Second, we will need to do something a bit odd. We will
travel across the original AddressOfFunctions array and
look for pointers (that are RVAs) that are within the
export section. What is this for? Forwarded functions!
Wack! Anyway, these are not addresses of exported
objects (functions, data) but are strings that must be
copied. In this special case, do like we did for the
AddressOfNames array and copy the string and set the
pointer to point to that copy.

Setup:

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_EXPORT.VirtualAddress
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_EXPORT.Size

to where we stuck it and how big it became. Finally align
up the buffer to a DWORD boundary for further appends,
and you're done with this part.

FYI, we are 50% through our to-do list. And we haven't
compressed any data yet! It's all downhill from here...

24.7 Do Stub Fixups and
Relocating the Relocations

At this point most of the stub's stuff has been built up
and we can fixup it's pointers to reflect the fact that we
have extracted and moved it's original components. This
task is very similar to the relocation fixups performed in
the stub. The difference is in computing the delta to

apply.

In normal relocation, like what the stub performs, there
is only one delta. This is because the image as a whole
moves, and all items are relocated by the same amount.
In our case, different sections have moved differently, and
thus each item must be treated as having it's own delta.

The delta computation in this case is computed as the
change between the RVA of the original item to be fixed
up (RVAFixupOrig) and the RVA of the item after it has
been moved (RVAFixupDest). The item at RVAFixupDest
must then be adjusted by this delta.

Since this translated RVADest is a relocated relocation, I
save it into an array of DWORDs for the next step. This
saves me from going through the relocation structure
twice.

CodeBreakers Magazine — Vol. 1, No. 2, 2006

After having performed stub relocations we can decide
whether we need to make the resultant executable
relocatable. That decision should be made on the basis of
whether the original is relocatable. There are two ways to
tell this; the presence of a relocation directory entry is a
good one. There is also a characteristics bit that indicates
that relocation records have been stripped. Suffice it to
say that if the original is not relocatable, then we don't
need to make the result relocatable. If it is relocatable we
need to create a relocation section for the stub. The stub
will handle doing the application at runtime.

To create a relocation section for the stub we first sort
the array of fixed-up relocation addresses we created
while doing stub fixups. The sorting is needed to handle
the quirky format of the relocation section.

Recall from installment 2 that the relocation records are
stored in chunks, one chunk per page, and as 16-bit
records that are essentially offsets into the page. I refer
you to installment 2 for details, and to the references in
installment 1. Suffice it to say, we travel along our now-
sorted array, emitting chunk headers whenever a page
change is detected and emitting 16-bit records otherwise.
A page is on a 4096 boundary for 32-bit PE files so you
can AND the address with Oxfffff000 to find it's page
value, and you can AND the address with 0x00000fff to
find it's offset for the relocation record. Also take care
that when you detect a page change, you will possibly
need to pad to a 32-bit boundary by adding a no-op
relocation record (IMAGE_REL_BASED_ABSOLUTE).

After processing all records set the

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_BASERELOC.VirtualAdd
ress
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_BASERELOC.Size

to reflect this new chunk that we added. We should
already be aligned to a 32-bit boundary.

24.8 Setup for TLS Stuff

If the original application used TLS we need to set some
things up so that the stub can help out. This is fairly
straightforward. Especially if there 1is none!

TLS information is communicated to the stub through
the public data. Way back, when we were appending the
data section took note of the index that starts the data
section. Also, since when we build the stub to have that
structure at the beginning, now we can cast the address
of the buffer offset by the index to a pointer to the public
structure. Again, we can't stow this pointer since

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

whenever we append to the buffer we risk reallocating
memory, but we can recompute the pointer as needed
from the index between appends.

Anyway, if there is no TLS, as evidenced by:

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_TLS.VirtualAddress

being 0, then we can simply clear out the copy of the tls
directory in the public data (we called it tls_original in
installment 2).

If there _is_ TLS, then we copy the original TLS
directory structure to the tls_original in the public data,
and copy over a few items to the tls_proxy:

SizeOfZeroFill
Characteristics
StartAddressOfRawData
EndAddressOfRawData

Note, the addresses do not need to be translated (shock-
of-shocks) because they reference data in the original
application, which we have not moved. The stub only
accesses that data _after it decompresses it.

Setup:

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_TLS.VirtualAddress
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_TLS.Size

to refer to the tls_proxy structure. You compute the
VirtualAddress with something like:

Stub Section RVA + dwldxStubPublicData + offsetof
(GlobalExternVars, tls_original)

Nothing was appended here, no need to align up the
buffer.

24.9 Compressing the Original
Data

Finally! We compress data! There are many compression
libraries to choose from, take your pick so long as you can
use in the decompression stub. Recall that means
operating with a minimal C runtime (which we produced
ourselves). The old standby of zlib works just fine for this
purpose, but don't expect spectacular compression.

You may also choose to implement a dummy compressor
that does no compression at all. This is useful during

CodeBreakers Magazine — Vol. 1, No. 2, 2006

development in order to isolate problems. Not useful
otherwise.

OK, assuming you have implemented the wrapper
interface I suggested in Utility Code, above, we are ready
to do some compressing! Well almost. The compression of
the original data could be large, so I prefer not to do it to
memory and rather directly compress to the output file
(ergo the HANDLE constructor argument in the
Compressor class). So we must compute the file position
of where this data goes.

We zeroed the size of the original PE sections, so the first
real one is our new stub section. We need to compute the
file offset to this new section (PointerToRawData).

You should make a copy of the original
IMAGE_NT _HEADERS if you haven't already. We will
manipulate it to reflect our output. Let's call it
nthdrDest and initialize it to the original exe's values.
Then calculate:

nthdrDest .FileHeader.NumberOfSections = (new section
count)

int nSectionHeadersPos =
IMAGE_DOS_HEADER::e_Ifanew +

sizeof IMAGE_NT_HEADERS);

int nFirstSectionPos = nSectionHeadersPos +

(new section count) *

sizeof IMAGE_SECTION_HEADER);

Align up the nFirstSectionPos according to
IMAGE_DOS_HEADER::OptionalHeader.FileAlignment

This is the PointerToRawData for our stub data. Stick
that value into the section information that we created
way back in the beginning (it was the last item in the
list).

Do a seek to this position + the sizeof the buffer we have
been building up. The net effect of this is to cause the
compressed data to be appended to the stub section
without having to stow it in memory.

Instantiate the compressor on the file handle (now
properly positioned).

As we mentioned in installment 2, the exact format of the
data stream is a matter of design. I had made a
suggestion of using:

struct original_directory_information
dword section_count

section 1 header

{

dword RVA_location

dword size

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

}

(section 1 compressed data)

if we were to use that, then we would invoke the following
using the _original_ exe's NT headers:

InsertData
(IMAGE_NT_HEADERS::OptionalHeader.DataDirectory

sizeof(IMAGE_NT_HEADERS::OptionalHeader.DataDire
ctory));

DWORD dwSectionCount =
IMAGE_NT_HEADERS::FileHeader.NumberOfSections;
InsertData (&dwSectionCount, sizeof(dwSectionCount))

for each section IMAGE_SECTION_HEADER
InsertData (&
IMAGE_SECTION_HEADER::VirtualAddress,
sizeof(IMAGE_SECTION_HEADER::VirtualAddress));
InsertData (&
IMAGE_SECTION_HEADER::SizeOfRawData,
sizeof(IMAGE_SECTION_HEADER::SizeOfRawData));
InsertData ((actual pointer to original data),
IMAGE_SECTION_HEADER::SizeOfRawData);

In other words, we are pushing the RVA of where the
data goes, the physical (uncompressed) size, and then the
physical data. We do this for each section of the original.

When we are done we invoke Finish() on the compressor
to flush any remaining data not written.

We get the number of actual compressed bytes with
CompressedCount(). This we add to the size of the
buffer we were building and store it in the
SizeOfRawData field of the section header for the stub.

Finally, get a pointer to the structure containing the
public data (this is why we didn't write out this until
now). Set the value of the stub entry point (after
translating, of course), the RVA of the start of the
compressed data (which is the RVA of the stub + the size
of the stub buffer) and the size of the compressed data
(which we got from the compressor when done).

Then seek back to the position PointerToRawData we
just computed and write out the stub buffer. Basically we
just concatenated the two in reverse order.

Finished with generating and writing out the stub!

24.10 Processing the Resource
Directory
Processing the resource directory is a strictly optional

task. It is a bit tedious. Benefits of processing include
preserving the ever-important application icon and

CodeBreakers Magazine — Vol. 1, No. 2, 2006

version information so that one's experience with
Explorer can be gratifying and fulfilling, but also so we
can support various OLE features.

If you don't care about these things simply carry on. If
you do care, then more 'fun' awaits.

The 'fun' that awaits is similar to what we did for exports
earlier in that we walk a structure and optionally copy
stuff over, adjusting the pointer when we do and leaving
it pointing to the original data in the compressed section
otherwise.

The difference is that this structure is more complex,
with more objects and a more complex decision on what
to keep. First let me briefly tell you what you want to
keep uncompressed because that's the easy part to know
and tedious part to figure out experimentally. You will
want to keep uncompressed the following resources:

« first RT_ICON should be kept

+ first RT_GROUP_ICON should be kept
+ first RT_VERSION should be kept

« first "TYPELIB" should be kept

« all "REGISTRY" should be kept

OK, that being said, keep in mind that resources are a
multi-level tree of directories. You need to keep track of
at what level you are to make your comparisons in order
to determine whether to keep a resource or not. Also, as a
perceived convenience, all the fixed sized structures are
coalesced at the beginning with variable length ones
afterwards. This means all the directory structures are
at the beginning, with things like string identifiers and
resource data afterwards.

I do a similar thing as with the stub and build this
section in memory with a managed array of bytes. Once
it is constructed I write it out later.

You can walk the tree once to find where this boundary
between fixed and variable sized data lays, then copy the
fixed data verbatim. It's interesting to not that most of
the pointers in this section are relative to the section
itself, and thus do not require translation. The exception
to this is the pointers to the actual resource data, which
is an RVA.

Walk the tree a second time and append all the string
identifiers. Adjust the pointers to these strings keeping
in mind that they are _not_ RVAs, but are rather relative
offsets into the resource section.

Walk the tree a third time and copy over the resource
chunks for the resources types of interest described
above. Keep in mind that these actually _are_ RVAs, so

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

you will need to add the RVA of the beginning this
section. What is that? Well, it is the RVA of the last
section, plus its size, aligned up to the
NT_HEADERS::OptionalHeader.SectionAlignment. The
resource chunks should be aligned between appends.

Setup the section header for this additional section. It
must have the name .rsrc. Setup the VirtualAddress of
this section to the RVA we just computed. Setup the
PointerToRawData in a similar manner, except use the
last sections PointerToRawData + SizeOfRawData and
align the result up by the value of
IMAGE_NT_HEADERS::OptionalHeader.FileAlignment

instead. Set the SizeOfRawData to the size of the
resulting chunk, and the VirtualSize to the same. You
can align these values wup if you like.

Similar to what we did with the stub, seek to the
PointerToRawData and write out the data in the buffer
we've been building.

Finally, set:

IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_RESOURCE.VirtualAddr
ess
IMAGE_NT_HEADERS::OptionalHeader.DataDirectoryl
MAGE_DIRECTORY_ENTRY_RESOURCE.Size

and we are done with that.

24.11 Dotting I's and Crossing
T's

There are some details that will need to be fixed up
before writing the rest of the stuff out. Mostly this has to

do with the various directory entries, but let's not forget
the entry point address!

The entry point is computed as the stub 'dll's entry point
after being translated with the translation device I hope
you created.

The image size needs to be recomputed as the last
section's VirtualAddress plus its VirtualSize.

Most of the directory entries need to be copied over from
the stub 'dll' after being passed through the translator.
Exceptions include the Resource directory. If you
processed resources you should point it to the new
section you created. If you did not leave it as it was in the
original. Resources will be available at runtime, but not
to explorer or OLE (or ResHacker).

If you made exports/relocations, setup those entries (that
was discussed earlier).

Some directory entries should definitely be zeroed out:

CodeBreakers Magazine — Vol. 1, No. 2, 2006

« IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT --
kiss it goodbye
+ IMAGE_DIRECTORY_ENTRY_IAT -- expunge it

+ IMAGE_DIRECTORY_ENTRY_DEBUG -- (we don't
really have bugs, anyway)

Seriously, though, the first two are used by the loader
and will cause crashing behaviour. Removing them
harms nothing. The last one might be nice, but the
debugger can't get to the data until after the application
is running, which is too late.

* Writing out the Remainder
* Copy over the original DOS stub.
* Write out the modified PE header.

Position to the section header offset we computed
(nSectionHeadersPos) Loop through the section headers
we have been keeping on-hand and write them out. If you
have a modified resource section, take care to rename the
original and make the new one be named .rsrc to work
around the Microsoft OLE automation bug.

Close your file.

25 Beyond Packers

I think it's useful to consider from a big picture of what a
packer is, because subsets of the technology can be used
for different applications. For instance, we bound new
code and data to an arbitrary executable that was not
designed to host it, without damaging the original
program. This is like an exe binder. Discard the
compression and a lot of the manipulation of directories
and you can produce one. Similarly, one could retain
some of the directory manipulations, like with the
imports, and fashion a protector of sorts to resist reverse
engineering. Other extended applications may come to
mind as well.

26 conclusions

I hoped you found some useful information in this article.
I enjoyed having the opportunity to write it.

© CodeBreakers Journal, http://www.CodeBreakers-Journal.com

	How to Write Your Own Packer
	 1 Intro
	 2 What You're Getting Into
	 3 Big Picture
	 4 First Step
	 5 Next Step
	 6 Continuo
	 7 A Stub That Runs
	 8 Choice of Compressor
	 9 Runtime dependencies
	 10 Making a Trivial C Runtime to Link Instead of the Proper One
	 11 Unpacking Stub Responsibilities
	 12 Packer Parameter Globals
	 13 Computing the Load Address
	 14 Decompressing the Original Data
	 15 Performing Relocation Fixups
	 16 Resolving Imports
	 17 Supporting TLS
	 18 Last Bit for DLL Support
	 19 Afterthoughts on Stubs
	 20 What's Next
	 21 Continuo
	 22 First Things
	 22.1 Project Configuration
	 22.2 Utility Code

	 23 Basic Tasks
	 24 Details
	 24.1 Determine Size of Original
	 24.2 Setup New Section(s); Modify Originals
	 24.3 Create and Add Stub Outside this Region
	 24.4 Starting to Process the Original Stub
	 24.5 Merging Imports Data
	 24.6 Exports
	 24.7 Do Stub Fixups and Relocating the Relocations
	 24.8 Setup for TLS Stuff
	 24.9 Compressing the Original Data
	 24.10 Processing the Resource Directory
	 24.11 Dotting I's and Crossing T's

	 25 Beyond Packers
	 26 conclusions

